Bottomup Indiana Topology Physics curricula

Inspired by Nanoyou materials, pupils from 14 to 18 years old where involved in **experimental activities** with the aim to introduce nanoscience and nanotechnolgy not as as a self standing chapter but as a cutting edge topic permeating the whole Physics curricula. They worked on new materials predicting, testing, analyzing data, and studying their possible applications. Results often challenged their "school" Physics knowledge and introduced **new perspectives**.

Some examples:

- Measuring forces: friction, adhesion and biorubber properties
- Density calculations of usual materials compared with aerogel one
- Electrical resistance and QTC pills (rubber whose conductivity depends on applied pressure)
- Metals contraction and the counterintuitive beheaviour of smart alloys due to atomic dislocation
- Magnetic fields visualization and ferrofluids properties
- Electromagnetic spectrum and light interaction with materials and surfaces: colloids,
- LCD crystals, aerogels.
- From optics to TEM: diffraction and seeing the "invisible".

One of the main focus was the

role of nanotechnologies in sustainability:

- Light transmission through nanocoated glasses and polymeric thin films against green house effect
- Superhydrofobicity and thermal insulating properties of new materials: aeroclay, aerogels
 Nanoporous materials for oil spilling containement and absorption
- Organic PV and Graetzel cells
- Hydrophobicity and selfcleaning surfaces: textiles, glass

School: Liceo Scientifico Sorbelli / ISIS Cavazzi, Pavullo(MO)
Country: Italy

Subject: Italy
Physics

N° of students involved: 60 (age 14-18)

Scientix Resources:

- Nanoyou welcome pack
- Science in school
- · Issue 17 Dec. 2010 School experiments at the nanoscale
- · Issue 10 Dec. 2008 Nanotechnology in school

The project involved the collaboration of firms and companies which willingly offered samples and of the University of Modena, Physics Department whose academic personnel and researchers offered their support and counselling.

Experiments:

Studying hydrofobic surfaces: lotus effect and looking for contact angles in new building materials

Aerogels: As light as air?

... density tests ...

Gecko effect:

biorubber and its

adhesive properties

(measuring forces)

... stress resistance and light transmittance

Heat conduction: evaluating aerogels as insulators with LCD sheets

Ferrofluids: synthesis

Polymeric thin film: against green house effect

Smart alloys: shape memory metals

